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A practical method is given for solving the problem on the undisturbed
motion of a system with time lag for the critical case when one of the
roots is zero.

1. Statement of the problem. We consider the equation
(1.1)
Ao, (1)~
= N 3+ 9 dn, (9)+ Xi(ay (2 +9), .., 7 (249)) G=1,....m

5=1 —

where the integrals are taken in the sense of Stieltjes [1,2]; the

X, (2,8, ..., 2,(9)) are functionals defined for sectionally continuous
functions x;(%) of the argument (-7 < & < 0) and represent nonlinear
perturbations.

More precisely, the X, satisfy the Lipschitz condition in the x,

| Xa (2" (9), o0 2" () — Xa o (W), ..o o )| < LJ2" — 2] (1.2)

[e®=sup (M|, ..o laa M L=Li{Ja"|+]2"[}*  npu —zT0<0
(1.3)

Here L, and a; are positive numbers.

The condition (1,3) together with {1.2) guarantees the nonlinearity
of the terms X in Equations (1.1). Obviously, X(0, ..., 0) = 0. The
motion x = 0 will be called the undisturbed motion of the system (1.1}.
We shall assume that if one substitutes in X; a function x(y, ¥ ) which
is analytic in y then one obtains an analytic function of y.

From Equation (1.1), one can obtain equations with lag under special
assumptions on the Stieltjes measure d”ij (3). Thus, for example, let us
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assume
dnij('&) =0 npu '9#10, 3:/:——1’
d"l;,- (O) = Qij, dyh,' (_' T) = bi:’ (aijv b{j = const)
X;(@ 9y s @t +9) = Fi(2y(t) . or Ta(t)s 2t —7), .. ., Zn(t—7))

where F is an analytic function of its arguments. In this case we obtain
the following system of equations for the disturbed motion with lag
[ delay ]

d (¢ n n
:&( ) =N az; () + ) bigi(t — <) + Fi(@y (), ..., 2a(t—1) (=1,....n)
= = (1.4)
The system of linear equations with lag )
dz (1)~ ¢
F7a @i+ ¥) dn; (9) (1.5)
=1—=

we shall call the system of the first approximation.

Let us consider the characteristic equation of the first approximation

0
Ay =|—sp+ | eodn 9] =0 (1.6)
Let us suppose that among the denumerable set of roots A, A,, ...,
A, ... of Equation (1.6) there is one zero root (A\; = 0), while each of
the remaining roots has a negative real part

Re hj < —2a G>1) (1.7)

In this case we have the so-called critical case of one zero root.
This problem was solved by Liapunov [3,4] for motions described by ordi-
nary differential equations. In this case the stability of the undisturbed
motion of the system of the first approximation does not imply the stabil-
ity of the undisturbed motion of the entire system. The nonlinear terms
have a definite effect on the stability or instability of the motion. A
number of other critical cases for ordinary differential equations were
investigated in the works of Liapunov, Chetaev, Malkin, Kamenkov,
Krasovskii and others. For systems with lag the corresponding problem has
not yet been considered in the general case.

For systems with lag, Bellman [7 ] has shown that if the undisturbed
motion of the first approximation is asymptotically stable (Re A. = — 2a),
then the undisturbed motion of the entire system is asymptoticalfy stable.

Here we consider the stability of the undisturbed motion x = 0 for the
system (1.1) with lag in the critical case of one zero root.
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In order to determine dx (t)/dt at a given time it is necessary to
know x,(t) not only at the glven moment of time t, but also over the in-
terval (t —:r, t) of length r, It is, therefore, convenient to select
[1] for an element of the trajectory not the point x,(t) but the segment
2:(t +9) (-r <9 <0) of the trajectory. Hereby, one can treat this
segment of the trajectory as a point in the function space B. Krasovskii
[1] has shown that in a function space the equations with lag are re-
placed by a system of "ordinary" differential equations whose right-hand
sides involve operators,

Let x (¢t) be a solution of (1.1). A solution element in the function
space will be given by x,(t +9) (-r < 9 < 0), Corresponding to Equa-
tion (1.1) we will have an equivalent system of "ordinary" differential
equations

T® e (9) + R (%) (1.8)
where dt ! ‘t :
(@) ={2, (T +3),. ..,z (E+ )} = {2 (), ..., 2o (B)
dz;, (9)
a5 (=<9 <0)
y@) = Az (3= n 0 (1.9)
2 X x; (%) d’flk B=20) (k=1,..., )
j=1—1
0 (—T<<8<0)
R (2, (%)) = Xp(@y 9o 2y (®)  (3=0) th=t....,m) (1.10)

It is obvious that the problem on the stability of the undisturbed
motion of the system (1.8) x (%) = 0 is equivalent to the corresponding
problem for the system (1.1), for if x,(9) is any solution of the
system (1.8), then x,(9) = x(t + &), where x(¢ +9) is a solution element
of the system (1.1).

If the initial function xo(%) is sectionally continuous, then the
operator A will be defined only for t > r > 0 if the corresponding solu-
tion is differentiable. In view of this, we shall assume that the initial

functions are differentiable and we shall consider the operators only
when t > 0.

This last statement does not exclude initial functions which are
sectionally continuous, because after the passage of the time r these
functions will be replaced by a differentiable segment of the solution
which can be taken as an initial function.

2. Properties of a linear operator. Since Equation (1.6) has
a simple root equal to zero, the determinant A (0) will vanish:
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0

AO) =] { dy,, (9] =0 2.1)

—T

Let us denote by A, .(A) the algebraic cofactor of the element stand-
ing in the kth row and the jth colum of the determinant A(A). Then

n

8O =3 {830+ 2 | 9dn, (985 0) (2.2)

o=1

Since A’(0) # 0, there exist two numbers ky, 1, such that A, , (0)
is not zero. Let us consider the functional 171

M s

0 9
_S [(ou@de]am, )  (23)

T

Tt @) = 2] A (0){— 23 (0) +

1

I

1

defined for the differentiable functions "t(“(}) (-r <% <0). One can
easlly verify the identity

flAz(H)]) =0 (2.4)
Let

b(9) = (b, . .., bn) = (A1a(0)s . .., Aunlg))d = const (9) (2.5)

where d = [ A , (0) A(0)] ! is independent of #. We shall consider

b(®) to be a vector function in the space x(+) which is constant for all
3 on the interval — r < # < 0. Then

/163 =1, A @) =0 (2.6)

From the condition (2.4) it follows that f[ x,(9)] is an integral
(solution) of the system
dz, (9)
dt
The integral f[ x,(3)] will be called a functional integral. Let
%4(8) be an initial function for the solution x,(%) of the system (2.7).
Then

= Az (9) (2.7)

T2 (D)) = flxe ()] npu ¢ =0 (2.8)

Suppose the initial function xy(3) is such that
flxe ()] =10 (2.9)

Then the corresponding solution xt(%}) will decrease asymptotically as
an exponential function with exponent a, i.e.
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l2: (8] < K|z, (9 ]exp(—at) (K = const)

It is hereby assumed that the condition (1.7) is satisfied.

In view of (2.8) and (2.9), all solutions which decrease exponentially
will lie in the function space { x(%)} 1in the plane

Flee(3)]=0 (2.10)
The plane (2.10) will be called the L-plane.

We call attention to the fact that the operator A is defined for t >0
if the initial functions are differentiable, and for ¢ > r if the initial
functions are sectionally continuous. The functional f[ x,(8)] will
satisfy, therefore, condition (2.4) and its consequence (2.8) only for
differentiable x (%) when ¢t > 0, and it will satisfy those conditions
with ¢t > 7 when x,(%) is sectionally continuous (with discontinuities of
the first kind).

Let x(%) be an arbitrary element in the function space B in which the
operator A is defined and in which the functional f[ x(§)] has the above-
indicated properties. Every such element x(}) can be broken up into two
conponents as follows:

y=flz(®)], z®)=z®)+b®)y, b(®) = const(9) (2.11)
(or more precisely, x,(8) = 2,(8) + by (k= 1, ..., n)).

The following condition holds:

N]=0 2.12
Indeed, /z(9)] (2.12)

Fz@®] =@ —yflb(3)) =Flz@)]—/[z(3)]-1=0

since fl ] = 1 in view of (2.6), and y = f[ x(®) ] in consequence of
(2.11).

Equation (2.12) determines the L-plane in the function space B. The
vector- function b(%) = (b, ..., b ) = const,#&[~r, 0] does not lie
in the L-plane because f[ 4] = 1 by (2.6). The above-given decomposition
of x(®) represents, therefore, geometrically a breaking-up of the vector-
function x¢8) into two terms z(9) and yb, with z(®) situated in the L-
plane and with yb being colinear with the constant vector b.

The decomposition of the function x(9) into two terms z(®) and yb(9)

is unique. Indeed, suppose that there were two decompositions of x(%) of
the form
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Z(¥) =2, (3) + b =2 (¥) + b, or 21 () —2,(8) =b(y:—yy)

Let us assume that y; # y,. Operating with f on both sides of the dis-
played equality we obtain

—h—y)/l=p— = fl2:(MN— [[®)]=0, or =y, n=1
It follows from this that if x(9) = 0, then z¢8) = y = 0,

The system (2.7) of the first approximation takes on the following
form in terms of z,(#) and y(¢):
dz, (9)

dt

dy___O

a= = 4z,(3), Jze(®)=0 (2.13)

Let us express Equations (1.8) in terms of z,() and y(¢). We obtain

=Gl @ = [ - ] =/ [Aze(M]) + /(R (2 (9))] = /(R (z: (9))]

d&g (32 - d"".: %)
dt — dt

b — 4z((9) + R (2(9) — bf{R@.(9)]=
= Az, (%) + yA (B) + R (2(9) + by) — bf [R (2 (%) + by)]

AB)=0
Equations (1.8) can in this manner be reduced to the form
d _ dzy (9)
Y_Yyu®) P o4 ®)+Zu®),  (214)

Here Y i1s a functional defined by the formula
Y(y,2.(3) =/[R(2:(9) + by)] =

— D A (0) X (2t () + bays + « s 2t (3) -+ byy) (2.15)

=1

i

vhile Z(y, z, (9), 3) is an operator defined the following way:

—BY (1,5 (8) (—T<8<0)

22 (®) 3):{Xk(zlt(9)+'bly,...,zm(m'))-{—bny]——ka (®=0) (k=1...,) (2.16)

We note that Z(y, z,(9), 9) is a function of ¥ belonging to L because
f[Z] = 0. It is obvious that

Y0, 0=0  Z(0,0,9%=0 (2.47)

The functional Y and the operator Z satisfy a Lipschitz condition with
respect to the variables y and z (%) of the type (1.2) and (1.3)/
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Since the system (1.8) has a unique solution xz,(3) under the initial
condition z,(9) in the neighborhood of the origin x = 0, it is obvious
that z (9) and y(¢) constitute the solution of the svstem (2.14) with the
initial conditions z 0®) and y(0) if 2 () = 2 (%) + by (2).

The uniqueness of the solution z ('3) y(t) follows from the uniqueness
of the decomposition of an arbltrary function x(¥) in terms of z(9) and

yb.

3. Transformation of an equivalent system. (a) Let the
symbols Y*(y) and Z°(y,®) stand for the analytic function

Y (y)=Y(y, 0)=gy™ +. (3.1).
z° (yv %) Ez(y’ Oa '3) =& (%) m.+ e (gl (3) —vector, m1>2)

It can be shown that there always exists a transformation of the vari-
able z such that a;, > a, The transformation is similar to the transform-
ation used by Liapunov for the case of one zero root of a system describ-
ed by ordinary equations [3, p. 142]. There is an exceptional (singular)
case which will not be considered here.

(b) Let us consider the system of equations
Au®) +Z(y, u(®), 9= 0 (3.2)

where Z € L and is defined by the relagion (2.16) in which z,(9) is re-
placed by u(9); the operator A is defined by Fornula (1.9).

Let us define the operator A1 (4(9)) in the following way:

A7 (o () ={— b (/127 + 7 [Ig_@(%) d9]) + o’ + o, (M} G=t....m

where { x,*} = x* satisfies the system of homogeneous algebraic equations

n —r & 0 (k = )
Zakm =00 +3 | [S (3:) 49, dn, () (a5 = { dms(9)
0 -7

'Ihe last system is solvable if ¢(¥) lies in the L-surface, and, hence,

the following condition is satisfied:
. n n_0 9
Jle®=3 85, 0) [— 0,0 + X [S B, (%) ddy] dn, (9)] = 0
i=1 l=1 —7

The operator A~} is bounded (in the norm) on the set of differentiable
functions ¢(%) (- < § < 0) belonging to L, The norm of A ! is defined
by
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| A7 () | =sup (| Ao M) |/[e M) = M

vhere M is a positive number.

The vector function A~ '¢(9) has a derivative with respect to on the
interval [ -7, 01].

It is not difficult to show that the next identities are valid for
any differentiable function ¢ (9)€ L (— <9 <{0):

AA9 (D) =9 (9) A7 49 (3) = ¢ (9) (3.3)
Theorem 3.1. The system of Equations (3.2) has a unique solution
uly, 9) analytic in y in the neighborhood of the point y = 0, u(0,9 )=0,
continuous in & and such that u(y, ) €L. This solution can be found by

satisfying Equation (3.2) with formal power series in terms of positive
powers of y with unknown coefficients of the type

u(y, 9 = um, (B) y™ + Upmyy () y™H 4 .. (3.4)

The coefficients are uniquely determined by the condition that u; ¢L.

Proof. Because of the properties of A}, a solution of the equation
u(®=-—A2(y, u(®), ¥ (3.9)
will also be a solution of Equation (3.2).

Since the operator A! is bounded in the norm, the operator Z satis-
fies the Lipschitz condition with an arbitrarily small coefficient gq.
Furthemmore, the operator A~! transforms every element ¢(3)€ L into an
element A~1¢p(9) € L, The truth of the theorem now follows from the
principle of contraction mappings [9 ]. The theorem can also be proved
without difficulty by the simple method of successive approximations.

(c) Let u*(y, 9) be a solution of Equation (3.1). We make a change of
the variable from z(9) to z,(#) in Equation (2.14):

2N =2z +u"(y, %), 23 =z ()} (3-6)
The system (2.14) takes the form
YWY (y, 2 (9) + (3, 9)) (3.7)

dzlt ()]

1T = Az (3) + Zu(y, 2 (3) + @ (3, B), 9) (3.8)

where
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Z1 :Au'(y, %)+Z(y’ zl+u‘(y’ 8)’ %)_%uy'—y

The corresponding function will be

° du* , 3 .
2@ M =—"02 Y (0 (v, 9))

Therefore, m; > m as long as the function Y° (y) = Y(y, u*(y, 9)) does
not vanish identically. The latter case will be called the singular case.

4. Criterion of stability. Let us suppose that the system (1.8)
of differential equations with an operator type of right hand side
(equivalent to (1.1)) has been reduced with the aid of Liapunov’s trans-
formation (Section 3) to the form

d da; (9
B Yioa+ @), B =An®) + 2 w®), 8 (&)

Here, Y, (y, z“(%)) = Y(y, z“(ﬁ) + u*(y, %)), the function Z, is de-
fined in (3.8), and the function u*(y, %) is the solution of the system
(3.2):

Y2 () =Y(y, v (y, 3))=gy™+ ...
° ot (y, 9 ° m
Z° (Y, %):——u—a(yy—zyl () =gy™+ ... (my > m)
Theorem 4.1. Suppose that the system of equations (1.8) can be re-
duced by the change of variables (2.11), (3.6) to the form (4.1).

(a) If m is odd and g a negative number then the motion x = 0 of the
system (1.1) will be asymptotically stable.

(b) If m is even, or if m is odd and g is positive, then the undis-
turbed motion x = 0 will be unstable.

Proof. On the plane L in the function space x,($) one can construct
for the linear system

dzl;t(ﬁ) = Az (}), flzw (3)] =0 (4.2)

a functional vz(zit(%), t) satisfying the following conditions:

¢y ” 2y (9) " v (211 (3), t))< Cy “ 2y () “ (4.3)
lim sup (%vt_z) < —cslz ()| nmpm At - +0 (4.4)
|02 (21" (9), 8} — 2 (22" (B), 1) a2’ — 20" || (4.5)

(This follows from the results of [ 1, pp. 191-192].
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Here €1, Cqs €3, and c, are positive constants.

We construct a functional v*(x,(9), t) for the system (1.8) (or (4.1))
of the form

0" (2 (9), 1) = — gy 4 0,2 (21 | V], 8) (4.6)

where y and z,,(8) are determined by means of x,(v) according to Formulas
(2.11), (2.14) and (3.6).

Suppose g < 0, and m is odd. One finds positive constants B, C, D such
that the following inequalities are satisfied:

Iyl < Bla®]  lzaMHI<Clac®], Jae@I< DLyl +lze @D &7

By making an upper estimate of v*(x,(3), t) we find that in the region
EXCTIRY

Vo' (a (9), t)] < (1g| B™TH™ - Heo?) |z, (9)] (4.8)

On the set r < || z,(9) || < H, the functional v*(x,(9), t) cannot take
on arbitrarily small values. This functional is bouncied from below by a
positive number. Indeed, let us assume that || v*|| (for some function
x*(9) satisfying the condition r < || x*(8)}| < H) is less than an arbi-
trarily small positive number §. Then

1 1
2 @] < D (gl + o @) < D (g [187 4 ¢,52)
The last inequality contradicts the condition || x*(8) || > r.

Let f(r) stand for the exact lower boundary of the functional v* on
the set r < || x(9)| | < H. The function f(r) is monotone decreasing
if r, > r,, then f(r,) > f(r,)); furthermore, f(r) < K|l x,(8) || because
of (4.8).

It is well known that the function f(r) can be represented, on
0< r < H, as the sum of two positive functions v(r) and s(r), where
v(r) is a continuous increasing function, while s(r) is a function with

jumps [81.
Hence, if || x( ) || < H, we have that
v" (20(), 1) = | g| - |y (x (W™ + v2® @ (9), 1) >
> 18] -1y @ @™ + ez @) P> w (L2 (9)]) (4.9)

Along a trajectory of the system (1.8) we find that
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i Av\* . . A
tim sup (89)" =~ gt (m+ )yt 2l lim sup (37) —

At—>+0 (1.8) (4-2)

. Av, Av
—g(m+ 1) y™Y 9+ 2 lim =2 — (=22
g( Yy™Yy (Y, zu C9)) [vzlml OSUP [<At>(1.e) (At)y(4_2)]<

<—gtm+ 1) ym —2ce| 20 ) [*+ g (m + 1) y™ [ Y1 (¥, 0)] +
+ gz (M [[1+ 2e5¢4 |12 (D) [ ([ 22 @, O[] + ¢l 22 (D))

Let us select H, so small that the following inequalities are satis-
fied:

g2 —3gY, (. 0)y™>0
26,05 — 3eacaq (Jy Iz () ) >0
—g¥(m -+ 1)y — 2¢ic5 || 21 (V) || + 3‘qult (¥ ”ym <0

The last inequality will hold if
g<ZgVmt 1V oo
Thus, we obtain the following estimate:

. Av* 1 2 am 1’ ‘e
lim sup (37)  <E1g(m 1)y + 2oz ()
At—>-0 (1.18)

One can show in a manner analogous to the one used for estimating v*,
that there exists a continuous monotone increasing positive function w;

such that (w;(r)r > 0, w,(0) = 0)

At—00

. Av*
lim sup({t—)(m) < — wi(r) (4.10)

where w,(r) is found in a way similar to the way in which v(r) was found
in Formula (4.9).

From conditions (4.8)-(4.10) it now follows, in accordance with
Theorem 30.1 of [ 5, p. 1941, that the motion x = 0 of the system (1.8)
and (1.1) will be asymptotically stable if g < 0, and m is an odd number.

Next, suppose that g > 0 and that m is odd (or m is even). For the
functional v* for the system (1.8) we select the functional

v* (2 (9), 1) = gyt — va? (zu (9), 1) (4.11)

We compute the following limits:
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At-»>00

. . A (—v?) R . ‘A (— vg?y A(—
o A1t1—>nolo mf( At . )(4.2) o Altl—zr-lkomf [< AtU2 ))(1-8) < ( v22)>(4 2) }

. . Av*
— Jim inf (\—va)(l 9 (m + 1) g?y*™ — (m + 1) gy™Y1 (y, 21 (9)) —

= —(m+1)gym 4 lim sup (5F) o
Av 2
m 4 1) gy™Y, (v, z: (% 1 2 — 1
+ (m 4 1) gy Yy (g, 20 (9) + unsup[( ai) ) Jim s ()

Making estimates analogous to those made in the derivativation of
Formula (4.10), we obtain (if || x,(9) || is small enough and || x,(8) | <
H, < H)

1

lim inf(%—j)(js) > wq (|2 (9)]) (4.12)

At—oo

where the formula w,; is analogous to w(r), and w3(r)r > 0, wy (0) = 0.

The left-hand side of (4.12) is thus of definite sign and admits an
arbitrarily small upper bound. One can easily show that v* is bounded in
the region || z, (9| <H,.

We shall show that by the proper choice of xj(v) (arbitrarily small
in nom) the functional v* can be made positive. Indeed, let us select

y(0) =m0, 210(3) =0 (20 (9) = u* (n, 9))

In accordance with (2,11) and (3.6) the corresponding expression
2,*(9) will be

bn +u* (, ¥)

Substituting xo"‘ into the function v*, one can verify that
v*(2,*(®)) > 0 1f the nomm of || xy*(9) || is small enough.

Here the sign of v* will be positive for all x,*(9) with small nomms.
Thus, all the conditions of Liapunov’s first theorem on the instability
of motion [10 ] are satisfied, and that theorem applies, therefore, also
to systems with lag. The motion x = 0 of the systems (1.8) and (1.1) is
unstable.

Note 4.1, From the established theorem (4.1) it follows that the
stability or instability of the motion x = 0 are determined by the sign
of g or by the form of the lowest degree term of the function Y°(y) =
gy™ + ... Hence, in the reduction of the system (2.14) to the form (4.1)
it is sufficient to take, in place of the solution of the system (3.2),
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the approximate solution satisfying the system (3.2) with a degree of
approximation of up to a term of degree (m + 1) in y.

Note 4.2. If Y (y, 0) = Y(y, u(y,9)) = 0, we have the singular case,
The motion 2 = 0 will be stable in this case.

5. Example 1. Let us consider the following system with lag:

dx);jt(t) = Xg (t) + Xl (Zl (t), Ty (t), I (t — T), 2 (t — 1))
6.1
(Il';t(t) =azy (£ — 1) -+ X (21 (2), 22 (2), 21 (t —7), 23 (t — 7))

where Xl and X2 are analytic functions whose power-series expansions
around the point x = 0 begin with the second-degree terms.

The system of the first approximation is

dx; (L drs (1
%:m ), ;t( ) . 4z (t—n) (5.2)
Its characteristic equation
AN =r2— hae > =0 (5.3)

has one zero root. The remaining roots will have negative real parts if
the parameter a satisfies the following condition

—x/2t<<a<0 (5.4)
The operator Al %y, x2] has the form
#z; (9) -
yi (3) = T (——— T <V< 0) (i==1, 2) Y1 (0) = Xy (0), Yo (O) = Xy (—-' T)

The operator R(x,, ‘2) will be

0 ("" T<‘9 <0))

R (21, 3) = {Xi (@, (9), 2y (8)) (9,=0), =y (9)=; (t +9) (=L 2

The functional (2.3) for the system (5.2) will have the form
-—T

f %1, 3] = az,y (0)— =z, (0)—a S T, (8) d8, b = (b1, by)=(a"1, 0)
0

The transformation (2.11) becomes
-7

1
Y = axy, 0)— Zot 0)+ e S Zot (9)ds, it (9) = 2t ®) + 2y T = Zyt ) (5.6)
0

The system is hereby transformed to the form (2.14) in which
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Y (y, Z; () =aX; (xt(“})) — X, (xt %))
—Y (—1<9<0), 0 (—1<8<0)

Z, = 1 Z2 = (57)
HL— 2V (8=0), X, (8=0

where xitc%Q is determined by (1.2). Let us suppose that
Xy = kymyy 2 (0) - kawyy2 (0), Xy = hay 2 (— ) + Ly, (0) 2y (0)

where kl, kz, ll and 12 are constants, Equations (3.6) become in this
case

gy (9 4 dzy
75 — 2 ¥ =0 =0 (—T<9<0)
(5.8)
1 1
22(0)'+7X2:0, Zz(—'T)"*";Xz-:O =0
We shall look for a solution of (5.8) in the form
23 =v3 (82 va (D) Y- - - -, Zy=us Ny Fus ()24 - - - 5.9

where v;, u; are unknown coefficients., Substituting (5.9) and (5.8) and

equating coefficients of like powers of y, we obtain

dv
-d—; = a3 (kia —ly), Up = — lja~3

We can find the function vy from this equation and from the condition
that the point ("1' u,) belongs to L, i.e, from the fact that
fl vy, uy 1 = 0. We obtain

1 1
Uy == F(ak; — 1) 99— Y L1 —a
Let us consider the expression

Yo(y,z(y) = (@b — L) a2y +42{...) +

When ak; — I, # 0 we have unstable motion. If ak; ~ I, = 0 one has to
consider the coefficient of y3 in Y°

11
YOy, z() = e 8+ ¥ () F (5.10)

If 1112 < 0, one has asymptotic stability, and if lll2 > 0, the motion
x = 0 is unstable.

Let us suppose that lll2 = 0, One must now consider the coefficient of
the fourth power of y in the expression for Y°, For this purpose one has
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to find u; and v, in the expansion (5.9) when 12 = 0 and when l1 = 0. In
the first case, the coefficient of y, in (5.10) will be equal to
—kzlld's. In this case, if llk2 # 0, one has unstable motion. If ly =

kz = 0, the singular case occurs. In the second case, when i; = &, = 0,
we have the singular case, and hence stability for the motion x = 0.

We thus see that all possible cases can be reduced to the five types

() ak,

ll # 0 (the undisturbed motion is unstable)

(b) ak1 - l1 = 0, lll2 > 0 (the undisturbed motion is asymptotically
stable)

(c) ak; ~ 1, =0, lll2 < 0 (the undisturbed motion is unstable)

(d) aky - 1, =0, 1, =0, I, # 0 (the undisturbed motion is unstable)

(e) akl -1, = 0, 1

2 0, k2 = 0 (the undisturbed motion is

or ll = 0, kl= 0 stable; one has the singular case)

Example 2. Let us consider

a2 d —
20 e B X, v ), we—), 7 () (5.41)

where X is an analytic function of its arguments and ¢ is a constant.

With the aid of the substitution zl(t) = x(¢), zz(t) = x(t), the
system (5.11) can be reduced to the system (5.1) in which X1 = 0, X2 = X,
Since the lowest degree terms in y in the functions Y° and Z° are always
the same in this case, we obtain the following results.

We consider the function

{1 1
X (?y, 0, 5w 0>=gy'"+.--

If » is odd and g < 0, we have asymptotically stable motion. If = is

odd and g > 0, or if » is even, we have instability of the undisturbed
motion. Finally, if

AT(l-y,O,%fy, 0>EEO

we have stability of the undisturbed motion (the singular case).
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