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is given for solving the problem on the undisturbed 
with time lag for the critical case when one of the 

1. Statement of the problem. We consider the equation 

(1.1) 

7-i; i ~j(t+a)d~i~(a)+xi(21(t+a)~..,~~(t+~)) d”i 0) 
(i-.1,. . . , I/) 

j=l-r 

where the integrals are taken in the sense of Stieltjes Il.,2 3 ; the 

Xi(X,W, .*., n,$@) are functionals defined for sectionally continuous 

functions xi(@) of the argument a,( - 7 < 9 < 01 and represent nonlinear 
perturbations. 

More precisely, the Xi satisfy the Lipschitz condition in the xi 

Here L, and u1 are positive numbers. 

The condition Cl.31 together with ll.2) guarantees the nonlinearity 

of the terms Xi in Equations (1.1). Obviously, X(0, . . . , 01 f 0. ‘lbe 

motion n P 0 will be called the undisturbed motion of the system (1.1). 

We shall assume that if one substitutes in Xi a function x(y, U 1 which 

is analytic in y then one obtains an analytic function of y. 

From Equation (1. I), one can obtain equations with lag under special 

assumptions on the Stieltjes measure dqij CD). ‘bus, for example, let us 
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assume 

S.N. Shironov 

dqij(8) =o npn a+0, B#--r 

drrj (0) = aijt drij (- 7) = hj (aij I bij = const) 

xj(x,(t+a), a - * 9 G(t+~))=~i(%(t)7. --,&a(t)9 Xl(t--s), --.Y Xn(t-5)) 

where F is an analytic function of its arguments. In this case we obtain 

the following system of equations for the disturbed motion with lag 

[ delay 1 

7 =fJ QjXj(t> +i bijXj(t-T5) + Fi(X,(t), . . ., Xn(t-7)) 
dXi (t) tic 1, ..**TZ) 

j=l j=l 

The system of linear equations with lag 
(1.4) 

dxi (it) 
dt= i i Xi@ + wr,p) 

j=1 -T 

(1.5) 

we shall call the system of the first approximation. 

Let us consider the characteristic equation of the first approximation 

(1.6) 

Let us suppose that among the denumerable set of roots A,, A,, . ..) 

x . . . of Equation (1.6) there is one zero 

tLk remaining roots has a negative real part 

root (x, I 01, while each of 

Rehj\(-2x (i > 1) (1.7) 

In this case we have the so-called critical case of one zero root. 
This problem was solved by Liapunov [ 3,4 1 for motions described by ordi- 
nary differential equations. In this case the stability of the undisturbed 
motion of the system of the first approximation does not imply the stabil- 
ity of the undisturbed motion of the entire system. The nonlinear terms 
have a definite effect on the stability or instability of the motion. A 
number of other critical cases for ordinary differential equations were 
investigated in the works of Liapunov, Chetaev. Malkin, Kamenkov, 
Krasovskii and others. For systems with lag the corresponding problem has 
not yet been considered in the general case. 

For systems with lag, Bellman [7 I has shown that if the undisturbed 
motion of the first approximation is asymptotically stable (Re h. = - 2~1, 
then the undisturbed motion of the entire system is asymptotical I y stable. 

Here we consider the stability of the undisturbed motion x = 0 for the 
system (1.1) with lag in the critical case of one zero root. 
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In order to determine C-LX,(~)/& at a given time it is necessary to 

know xi(t) not only at the given moment of time t , but also over the in- 

terval (t - r , t) of length I. It is, therefore, convenient to select 

[ 1 I for sn element of the trajectory not the point xi(t) but the segment 

xj(t + 9 ) ( -P < 9 < 0) of the trajectory. Hereby, one can treat this 

segment of the trajectory as a point in the function space B. Krasovskii 

[ 1 I has shown that in a function space the equations with lag are re- 

placed by a system of lordinarym differential equations whose right-hand 

sides involve operators, 

Let n (t ) be a solution of (1.1). A solution element in the function 

space will be given by ni(t + 9) (- r < 8 < 0). Corresponding to Kqua- 

tion (1.1) we will have an equivalent system of “ordinary” differential 

equations 

where 

4 (8) 
dt = Azt (8) f R (Zt (8)) (1 J-9 

I 
dx, (8) 

dl+ (G-78 <O) 

y(9) = AJ: (8) = n 0 

2 1 rj (8)dq,, (8) 

(1.9) 

(8 = 0) (k=l...., n) 
j=l-s 

R @t P)) = ( ;, (Xl1 ;;,: ” ” :p:o,, (8 = 0) 
(k=1...., n) (1 .lO) 

It is obvious that the problem on the stability of the undisturbed 

motion of the system (1.8) xt( 8) = 0 is equivalent to the corresponding 

problem for the system (1.1)) for if nt( 9 ) is any solution of the 

system (1.8), then z,(a) = x(t + a), where n(t + b ) is a solution elenent 

of the system (1.1). 

If the initial function x,(a) is sectionally continuous, then the 

operator A will be defined only for t > r > 0 if the corresponding solu- 

tion is differentiable. In view of this, we shall assume that the initial 

functions are differentiable and we shall consider the operators only 

when t > 0. 

This last statement does not exclude initial functions which are 

sectionally continuous, because after the passage of the time r these 

functions will be replaced by a differentiable segment of the solution 

which can be taken as an initial function. 

2. Properties of a linear operator. Since Equation (1.6) has 

a simple root equal to zero, the determinant A (0) will vanish: 
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A(O)=1 ;dqJ+O (2.1) 
--+ 

Let us denote by AL.(X) the algebraic cofactor of the element stand- 

ing in the kth row and b e It co usm of the determinant A(h). 'Iben ’ h 1 

A'(O) E i (- Aij(0) + i [ &$JB)Aj,(0)) 
j=1 0=1--r 

Since A'(O) f 0, there exist two numbers k,, 1, such that 

is not zero. Let us consider the functional 

n n 0 9 

(2.2) 

A Z,&,(O) 

defined for the differentiable functions ~~(8.) (-r a 3 < 0). One can 
easily verify the identity 

f[Az(&)]=O (2.4) 
Let 

b (8) = (61, . - . , b) = (&l(O), . . . , Al,&))d = canst (9) (2.5) 

Acre d= [ AI,k,(0) A'(O)] -' is independent of J+. We shall consider 

b(8) to be a vector function in the space n(s 1 which is constant for all 

9 on the interval - r <.a < 0. Then 

I[b (&)I = 19 A(b(8))=0 (2.6) 

From the condition (2.4) it follows that f[ x,(J+)] is an integral 

(solution) of the system 

(2.7) 

The integral f[ x,(%)1 will be called a functional integral. Let 
x,(B) be an initial function for the solution n,(B) of the system (2.7). 

Then 

an 

I [.G 631 = f’[% (WI npll t30 (2.8) 

Suppose the initial function x0('s) is such that 

f]G3(Yl= 0 (2.9) 

'Ihen the corresponding solution n,(a) will decrease asymptotically as 

exponential function with exponent ~2, i.e. 
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11% (8) II< K 0 q (8) 11 exp (- at) (K = const) 

It is hereby assuned that the condition (1.7) is satisfied. 

In view of (2.8) and (2.91, all solutions which decrease exponentially 

will lie in the function space {n(8) in the plane 

j tQ WI = 0 (2.10) 

Ihe plane (2.10) will be called the L-plane. 

We call attention to the fact that the operator A is defined for t>O 

if the initial functions are differentiable, and for t > r if the initial 

functions are sectionally continuous. 'Ihe functional f[ x,(N 1 will 

satisfy, therefore, condition (2.4) and its consequence (2.8) only for 

differentiable ~~(8) when t > 0, and it will satisfy those conditions 

with tb r when x,,(S) is sectionally continuous (with discontinuities of 

the first kind). 

Let xQa) be an arbitrary element in the function space B in which the 

operator A is defined and in which the functional f[ x(4)1 has the above- 

indicated properties. Every such element x(B) can be broken up into two 

components as follows: 

Y = j[ZG+)L s(q=z(a)+ bP)y, b(8) = const(8) (2.11) 

(or more precisely, x,(a) = z,(a) + bky (k = 1, . . . . n)). 

The following condition holds: 

Indeed, 
I b (a)1 = 0 (2.12) 

j~~(~)1=j1~(~)1-~j~~(~)]=j~z(~)]-j[~(8)~~1~0 

since f[ bl= 1 in view of (2.61, and y = f[ x&)1 in consequence of 

(2.11). 

Equation (2.12) determines the L-plane in the function space B. 'Ihe 

vector-function b(8) = (b,, . . . . b,) = const,&e[- r, 01 does not lie 

in the L-plane because f[ b] = 1 by (2.6). 'lbe above-given decomposition 

of x@) represents, therefore, geometrically a breaking-up of the vector- 

function xha) into two terms z(a) and yb, with z(8) situated in the L- 

plane and with yb being colinear with the constant vector b. 

The decomposition of the function z(s) into tm terms z(&:) and yb(8) 

is unique. Indeed, suppose that there were two decompositions of x(a) of 

the form 
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.q (8) = zip) + $4 = 22 (8) + yzb, or 21 w - 22 (8) = b (Y2 - ?/I) 

Let us assume that y1 # yz. clr, erating with f on both sides of the dis- 
played equality we obtain 

It follows from this that if ~(9) = 0, then ~4%) = y = 0, 

The system (2;7) of the first ~p~ximation takes on the following 
form in terms of t,{@ and y(t): 

dy 0 
dz*U+) 

dt= I - = AZ* (a), dt fIzrWl= 0 (2.13) 

Let us express Equations (1.8) in terms of z,Qa) andy(t). We obtain 

4 ($1 
-;if--=y-bz= Ax~(~)+~(x~(~))-b~~~{x~(~))]= 

= AZ, (gf + yA (b) + R (zt (81 + KY) - bf [R (a P) + WI 

A (b) = 0 

Equations (1.8) can in this manner be reducedto the form 

2 = y (Y, a P)), 
dzt P) 
dt= AZI (8) + 2 (Y, zt (a), 8) 

Here Y is a functional defined by the formula 

(2.14) 

(2.15) 

while Z(y, Zt pj, 9) ia oh operator defined the following way: 
- ~,Y(Y, Zf (8)) 

z (y~z~(4-)~ ') = ( xk(z,e (a) + bly 

(---<J+<O) 

, . . . , z,,* (8) + bny]--bkY (‘=o) (k=l,...$n) 
(2.16) 

We note that Z(y, zt(%), a) is a function of 8 belonging to L because 
f[.zl = 0. It is obvious that 

Y(O,O)~O, 2 (0, 0, 8) SEe 0 (2.17) 

'lhe functional Y and the operator 2 satisfy a Lipschitz condition with 
respect to the variablesy and t,f++,f of the type (1.2) and (1.3); 
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Since the system (1.8) has a unique solution x,(a) under the initial 
condition x,(8) in the neighborhood of the origin x = 0, it is obvious 
that zt 48) and y(t) constitute the solution of the svstem (2.14) with the 
initial conditions z,,(a) and y(O) if rt (a) = zt (a) + by (t). 

lhe uniqueness of the solution z t (8)) y(t) follows from the uniqueness 
of the decomposition of an arbitrary function xc%) in terms of z(9) and 

yb. 

3. Transformation of an equivalent system. (a) Let the 
symbols Y’“(y) and ZO(y, %) stand for the analytic function 

Y”(y)rY(y,O)=.gy”n+ . . . (3.1). 

2” (y, 8) E 2 (y, 0, z+) = g, (qy"l+ . . . (gl (8) -vector, ml 2 2) 

It can be shown that there always exists a transformation of the vari- 
able z such that ml h> a. ‘lhe transformation is similar to the transfoxm- 
ation used by Liapunov for the case of one zero root of a system describ- 
ed by ordinary equations [ 3, p. 142 ] . lhere is an exceptional (singular) 
case which will not be considered here. 

(b) Let us consider the system of equations 

Au (8) + 2 (y, u(8), 8) = 0 (3.2) 

where 2 6 L and is defined by the relagion (2; 16) in which z t (8) is re- 
placed by u(8); the operator A is defined by Formula (1;9).’ 

Let US define the operator A-‘(+(&) ) in the following way: 

A-l ~~(~))={-bh,(f[z’,+f[~(P(9)dO])+lh’+j’Pn(4)d4} (k=l,....n) 
k 0 

where ( zk*) = x* satisfies the system of homogeneous algebraic equations 

i %S* = ‘Pk (O) -t- i -f [i pl (81) d8,] d7jil (8) 
j=l Z=l 0 k 

(f&j = f d?$&!b)) (k = I’ . ’ . ’ n, 
-c 

‘lhe last system is solvable if ~$(a) lies in the L-surface, and, hence, 
the following condition is satisfied: 

f IT (‘)I ’ $ ‘jr, (0) [- ‘~j (0) + i’ [ i Pi ‘S,] ‘qjl (a)] = 0 
j=l 2=1--r 0 

‘Ihe operator A-’ is bounded (in the norm) on the set of differentiable 
functions +(a) ( -7 < 8 < 0) belonging to L. The norm of A-’ is defined 
by 
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where M is a positive number. 

Ihe vector function A-l+(8) h as a derivative with respect to on the 

interval [-5, 01. 

It is not difficult to show that the next identities are valid for 

any differentiable function +(8)6 L(-T<\(< 0): 

AK’(p (8) = cp (9) A-‘AC+7 (9) = Q (8) (3.3) 

Theorem 3.1. 'Ihe system of Equations (3.2) has a unique solution 

u(y, 4) analytic in y in the neighborhood of the point y = 0, u(O,9 )= 0, 

continuous in 8 and such that u(y, 8jC L. 'lhis solution can be found by 

satisfying EQuation (3.2) with formal power series in terms of positive 

powers of y with unknown coefficients of the type 

u(y, 8) = Urn,(B) yml + hn,+l(~)p+l+ . . * (3.4) 

lhe coefficients are uniquely determined by the condition that uje L. 

Proof. Because of the properties of A’-‘, a solution of the equation 

u(a)= -- CZ(y, u(B), 8) (3.5) 

will also be a solution of Equation (3.2). 

Since the operator A" is bounded in the norm, the operator 2 satis- 

fies the Lipschitz condition with an arbitrarily small coefficient q. 
Furthermore, the operator A-’ transforms every element +(J+lC L into an 
element A-'+(J+)CL. lhe truth of the theorem now follows from the 

principle of contraction mappings 19 1. l'he theorem can also be proved 

without difficulty by the simple method of successive approximations. 

(c) Let u*(y, 8) b e a solution of Equation (3.1). We make a change of 
the variable from z(8) to z,(a) in Equation (2.14): 

z(8) =%(a) + u'(y, a), zlta) = {zlk @')) (3.6) 

Ihe system (2.14) takes the form 

dy 
- = Y (Y, z12 (8) + U* (y, 9)) dt 

dz,t (8) 
___ = AU (8) + 2, (Y, zlt (8) + U* (y, a), a-) dt 

(3.7) 

(3.8) 

where 
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21 = Au’ (!I, 9) + 2 (?I, 21 + u* (y, q, 8) - g Y 

‘lhe corresponding function will be 

z,o (y, 3) z - au*;;* a1 Y (y, u* (y, 8)) 

Therefore, m1 > RL as long as the function Y” (y) s Y(y, u*(y, 8 1) does 

not vanish identically. The latter case will be called the singular case. 

4. Criterion of stability. Let us suppose that the system (1.8) 

of differential equations with an operator type of right hand side 

(equivalent to (1.1)) has been reduced with the aid of Liapunov’s trans- 

formation (Section 3) to the form 

dy 
- = Y1 (Y, z1+ (a)), dt 

da1 (8) 
- = A% (8) + -% (y, Zlf (W, 3) dt (4.1) 

Here, Y,(Y, zlt (%I) = Y(y, Zlt (8) + u*(y, 8 )) , the function 2, is de- 

fined in (3.81, and the function u*(y, 8) is the solution of the system 

(3.2): 

Y,” (y) = I’(% u*(y, a))= gym+ * * * 
2; (y, 8) = - w& 8)Y1yy) = g,p+ . . . (ml > In) 

‘Theorem 4.1. Suppose that the system of equations (1.8) can be re- 

duced by the change of variables (2.11), (3.6) to the form (4.1). 

(al If n is odd and g a negative number then the motion x = 0 of the 

system (1.1) will be asymptotically stable. 

(b) If IA is even, or if m is odd and g is positive, then the undis- 

turbed motion cx = 0 will be unstable. 

Proof. On the plane L in the function space n,(B) one can construct 

for the linear system 

dz,+ ($1 
- = Jht (% dt 

(4.2) 

a functional u2 (zi ,(B), t) satisfying the following conditions: 

ClIIQ WII-s 7J2 ht (ah t))_\<c, [ht (9) II (4.3) 

limsup +$ 
( ) 

<-c&@)I( npn At*+0 (4.4) 

I u2 (ht" (a), t) - u2 @If (q, q < c4 IIZllR -k' I/ (4.5) 

(This follows from the results of [ 1, pp. 191-192 I. 
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Here cl, c2, c3, and c, are positive constants. 

We construct a functional u*(x,(&), t) for the system (l.8) (or (4.1)) 

of the form 

where y and zlt ($1 are determined by means of rt(u) according to Formulas 

(2.111, (2.14) and (3.6). 

Suppose g < 0, and m is odd. One finds positive constants B, C, D such 
that the following inequalities are satisfied: 

Ijy 11 < B 11% P)jI, I/Q 67 II< c IIa (9) /I* II% P) j/ < D {IIYIl + lh (8) I( 1 (4.7) 

By making an upper estimate of v*(x,(&.), t) we find that in the region 

II ++) II < H 

II v* bt (B), t )I] < ( I g I B”+lkf” + HC,2) II Zt (8) /I (4.8) 

On the set F < 11 x,(9) 11 <H, the functional V*(Z (91, t) cannot take 

on arbitrarily small values. This functional is boun ed from below by a a 

positive number. Indeed, let us assume that II v*II (for some function 

x*(,9) satisfying the condition F < II x*(J3)[l <HI is less than an arbi- 

trarily small positive xnunber 6. Then 

II x* (3 II -=c D ( ;I Y’ \I + II zl* (8) [I ) c D (1 g 1-l 6 m’,l + s,-‘6f) 

‘Ihe last inequality contradicts the condition II x*(b) II > F. 

Let f(r) stand for the exact lower boundary of the functional u* on 

the set F < II x(&J I I < H. The function f(r) is monotone decreasing 

if F1 > F2, then f(r,) > f(r2) 1; furthermore, f(r) < KjI x,(S) II because 

of (4.8). 

It is well known that the function f(r) can be represented, on 

09 F 6 H, as the sum of tm positive functions V(F) and s(r), where 

U(F) is a continuous increasing function, while S(F) is a function with 

jumps181. 

Hence, if II x( ) II < H, we have that 

2). (Q(8), 0 = Igl * IjY @f (~111 m+l f- vs2 (Gt (B), q > 

> I g I * II Y bf (8)) lr+l + Cl2 II Zlf (v) II2 >, w ( II Zt (9) II ) (4.9) 

Along a trajectory of the system (1.8) we find that 
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Let us select H, 
fied: 

-g2(m-t 

so small that the following inequalities are satis- 

g2- 3gY,(y,O)y-m > 0 

2ClC, - 3w4q(i!3 Wit WI0 9 
1) ym - 2v3 II %t P) II + 3q h P) II ZP < 0 

'Ihe last inequality will hold if 

'thus, we obtain the following estimate: 

lim sup(g) 
At++0 (1.18) 

One can show in a manner analogous to the one used for estimating v*, 

that there exists a continuous monotone increasing positive function 10~ 

such that (wl(r)r > 0, ~~(0) = 0) 

(4.10) 

where wl(r) is found in a way similar to the way in which w(r) was found 

in Formula (4.9). 

From conditions (4.8)-(4.10) it now follows, in accordance with 

'lheorem 30.1 of[S, p. 1941, that the motion x = 0 of the system (1.8) 

and (l.1) will be asymptotically stable if g < 0, and m is an odd number. 

Next, suppose that g > 0 and that IR is odd (or m is even). For the 

functional u* for the system (1.8) we select the functional 

u* (zt (Y, t) = gym+1 - 7b2 (Zlf (a), 1) (4.11) 

We compute the following limits: 
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- lim inf [$$) 
At+w (1.8) 

= - (m + 1) &P - (m + 1) gymy, (Y, Zlf (3) - 

(4.2) 

= - (m +. l)g2yzm + lim sup z + 
At-+0 ( ) (4.2) 

Making estimates analogous to those made in the derivativation of 
Fonrmla (4.101, we obtain (if 11 n,(a) (( is small enough and 11 n,(a) II Q 

H, < H) 

(4.12) 

where the formula w3 is analogous to w(r), and wj(r)r > 0, ~~(0) = 0. 

The left-hand side of (4.12) is thus of definite sign and a&its an 

arbitrarily small upper bound. One can easily show that u* is bounded in 

the region (( n,(a) 11 <H,. 

We shall show that by the proper choice of X,(V) (arbitrarily small 
in norm) the functional V* can be made positive. Indeed, let us select 

Y (0) = r # 09 Go (9) = 0 bzo (8) = u* (r, 8)) 

In accordance with (2.11) and (3.6) the corresponding expression 

x,-,*(e) will be 

Substituting x0* into the function v*, one can verify that 

v*(x~*(%+.)) > 0 if the norm of II n,*(a) I( is small enough. 

Here the sign of u* will be positive for all r,-,*(a) with small norms. 

‘Ihus, all the conditions of Liapunov’s first theorem on the instability 
of motion [ 10 I are satisfied, and that theorem applies, therefore, also 
to systems with lag. ‘lke motion x = 0 of the systems (1.8) and (1.1) is 

unstable. 

Note 4.1. From the established theorem (4. 1) it follows that the 
stability or instability of the motion x = 0 are determined by the sign 
of g or by the form of the lowest degree term of the function p(y) = 
gy m + . . . Hence, in the reduction of the system (2.14) to the form (4.1) 
it is sufficient to take, in place of the solution of the system (3. 2). 
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the approximate solution satisfying the system (3.21 with a degree of 
approximation of up to a term of degree (n + 1) in y. 

Note 4.2. If U,(y. 0) E Y(y, u(y.Q )) E 0. we have the singular case. 
The motion x = 0 will be stable in this case. 

5. Example 1. Let us consider the following system with lag: 

dx, i(t) 
- = x2 (t) + x1(x1($ x2 (t), x1(t - 71, x2 (t - 7)) clt 

h2 w 
- =aq(t - 7) +x,(x1@), x2(t), x1(t - 71, x2(t - 7)) dt 

where XI and X2 are analytic functions whose power-series expansions 
around the point x = 0 begin with the second-degree terms. 

The system of the first approximation is 

has 
the 

dxl (t) 
- =x2 (th dt 

dx2 (t) 
- = ax2 (t - 5) 

dt 

Its characteristic equation 

(5.1) 

(5.2) 

A (h) E Aa - haeAh5 = 0 (5.3) 

one zero root. The remaining roots will have negative real parts if 
parameter a satisfies the following condition 

--n/2T<a<O (5.4) 

The operator A[ XI, x,1 has the form 

hi (4 
Yj (8) = -&- (-T<V<O) (i=l. 2) Yl (0) = x2(0), Y2@) = "x2(- T) 

The operator R(rI, x,) will be 

i 

0 (---7GQ <O), 
R (x1r xa) = Xi (xlt (a), xZt (9)) (8,=0) , xit (9) =xi (t + 8) (i=l, 2) 

The functional (2.3) for the system (5.2) will have the form 
-T 

,i 1x1, x21 = axlt (0) -x2* (0) - a 
s x2t (a) da, b = (bl, &)=(a-‘, 0) (5.5) 
0 

The transformation (2.11) becomes 

Y = axlt (0) - r*t (0) + a 1’ xZt (s)dB l xlt (a) = Zlt (9 + $ Y, x*t (9 = z4t(*) (5.6) 
0 

The system is hereby transformed to the form (2.14) in which 
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21 = 

i 

-$Y (-tta<o0), 

x1- +Y (4=0), 
z2 = 

i 

0 (-7<840) 

x2 (8 = 0) 

where xi ,(8) is determined by (1.2). Let us suppose that 

x1= @t 2 (0) + bQ2(% x2 f bit2 (- 7) f 12+ (0)2,, (0) 

where kl, k2, 1, and 1, are constants. Equations (3.6) become in 
case 

dz,t (33 
--$Y;o, da 

dzz 
yj$=O (- 7 G 8 < 0) 

22 (0) ,+ f x2 = 0, z2(-T7)+5r2=0 (a = 0) 

We shall look for a solution of (5.8) in the form 

zl = v2 (8) y2 + v3 69~3 t- - - - , 22 = u2 ($1 Y2 + u3 (9) y3 + * * . 

where vi, ui are unknown coefficients. Substituting (5.9) and (5. 
equating coefficients of like powers of y. we obtain 

dvz 
x = a-3 (kla - II), u2 = - llaw3 

(5.7) 

this 

(5.3) 

(5.9) 

6) and 

We can find the function v2 from this equation and from the condition 

that the point (u,, ~2) belongs to L, i.e. from the fact that 

f[ v2* “2 1 = 0. We obtain 

I( 1 
L‘? = g- ak, - II) a- --g II (1 - a?! 

Let us consider the expression 

Y” (y, z (y)) = (akl - 11) c2y2 + y3 ( . . ) + 

When at, - 1, f 0 we have unstable motion. If a&, - I, = 0 one has to 

consider the coefficient of y3 in Y” 

Y(O) (y, z (y)) = 22 y3 + y* ( . . .)i_. . . (5.10) 

If 1112 < 0. one has asymptotic stability, and if 1,1, > 0, the motion 
x = 0 is unstable. 

Let us suppose that l,l, = 0. One must now consider the coefficient of 

the fourth power of y in the expression for Y”. For this purpose one has 



Stability of tise-log ryoteme in case of zero root 687 

to find a3 and v3 in the expansion (5.9) when 1, = 0 and when 1, = 0. In 
the first case, the coefficient of y4 in (5.10) will be equal to 

-6 -k,l,o . In this case, if I,&, f 0, one has unstable motion. If 1, = 
kg = 0, the singular case occurs. In the second case, when 1, = k I = 0, 
we have the singular case, and hence stability for the motion x = 0. 

We thus see that all possible cases can be reduced to the five types 

(a) okI - lI f 0 (the undisturbed motion is unstable) 

(b) akI - I, = 0, 11/g > 0 (the undisturbed motion is asymptotically 
stable) 

Cc) ok1 - 11 = 0, 1lZg < 0 (the undisturbed motion is unstable) 

(dl ok, - I, = 0, 1, = 0, I, f 0 (the undisturbed motion is unstable) 

(e) ak, - II = 0, 1, = 0, k, = 0 (the undisturbed motion is 

or I,= 0. k,= o stable; one has the singular case) 

Exorp lc 2. Let us consider 

d2x (t) dx (t - 7) 
--@-=a d7 + X(x (t), x’ (t), x (t -@, x’ (t - 7)) (5.11) 

where X is an analytic function of its arguments and o is a constant. 

With the aid of the substitution xl(t) = x(t). x,(t) = x(t). the 
system (5.11) can be reduced to the system (5.1) in which XI = 0, X2 E X. 
Since the lowest degree terms in y in the functions Y” and Z” are always 
the same in this case, we obtain the following results. 

We consider the function 

x ( $Y, 0, +y, 0 > =gym+... 

If I is odd and g < 0, we have asymptotically stable motion. If a is 
odd and g > 0. or if a is even, we have instability of the undisturbed 
motion. Finally, if 

x ( _?_ y, 0, $ y, 0 > sz 0 

we have stability of the undisturbed motion (the singular case). 
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